# Welcome!! Chemistry 328N- 50120

**Organic Chemistry for Chemical Engineers** 

**Professor:** Grant Willson

Teaching Assistants: Paul Meyer, Qingjun Zhu, Josh Saunders

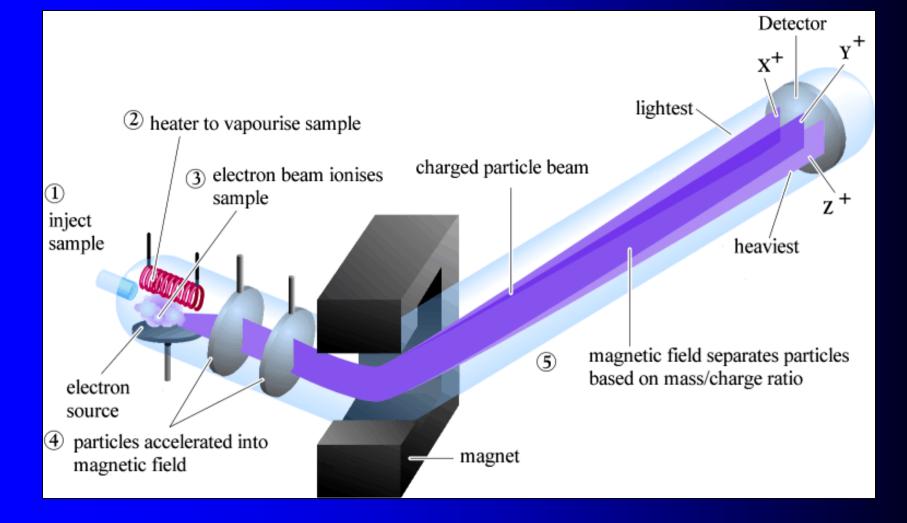
http://willson.cm.utexas.edu

January 22, 2019

### **Bureaucracy:**

- Please read the syllabus carefully
- Homework Instructions will be provided on Thursday
- Attend all lectures
- Do the homework
- Don't get behind
- Take advantage of office hours
  - We want to get to know you
- Watch the web page
  - <u>http://willson.cm.utexas.edu</u> (teaching)
- Keep up with the work!
- You can't "cram" for the exams in this class
- Don't get behind!!

### Homework..


 A detailed procedure for turning in and picking up homework will be provided on Thursday.

- There are problems assigned from the text book and there are "supplemental" problems.
- Answers to the problems from the text are provided in the Study Guide for the eighth edition of the text book.
- Answers to the supplemental problems will be posted on the web site.

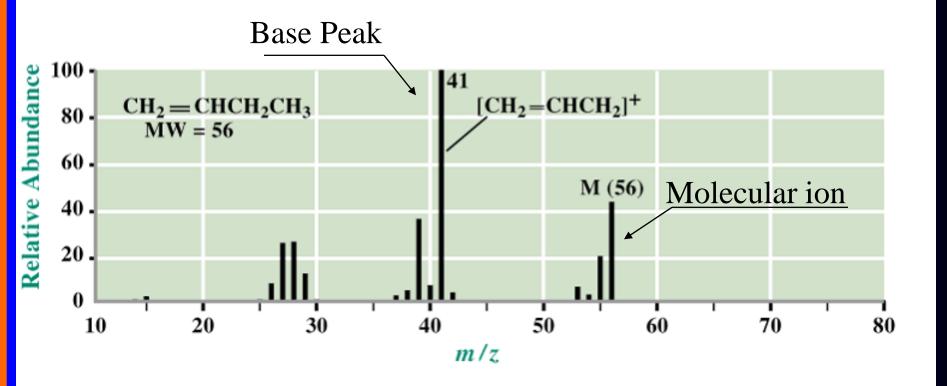
### **Structure Determination**

- We will spend some time learning how to establish the structure of "unknown" organic compounds through use of spectroscopic analysis.
  - Mass spectroscopy
  - Nuclear Magnetic Resonance Spectroscopy
  - Infrared spectroscopy
  - UV-Visible Spectroscopy

### **Mass Spectrometer**

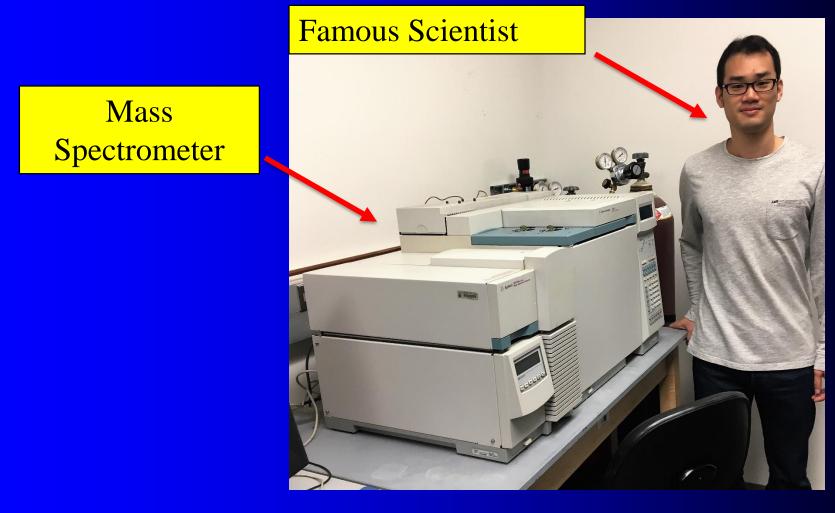


### A Mass Spectrometer


• A mass spectrometer is designed to do three things:


1. Convert neutral atoms or molecules into a beam of positive (or negative) ions

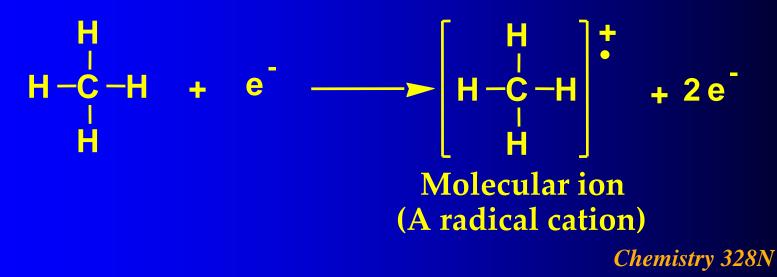
2. Separate the ions on the basis of their mass-to-charge ratio (m/z)


3. Measure the relative abundance of each ion https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/massspec/mass pec1.htm

## Mass Spectrum






#### Modern Mass Spectrometer unit mass resolution



### A Mass Spectrometer

#### Electron ionization MS

- In the ionization chamber, the sample is bombarded with a beam of high-energy electrons
- Collisions between these electrons and the sample result in loss of electrons from sample molecules and formation of positive ions



### Molecular Ion

 Molecular ion (M or M<sup>+</sup>): the species formed by removal of a single electron from a molecule

 For our purposes, it does not matter which electron is lost; radical cation character is delocalized throughout the molecule. Therefore, we write the molecular formula of the parent molecule in brackets with

– A plus sign to show that it is a cation

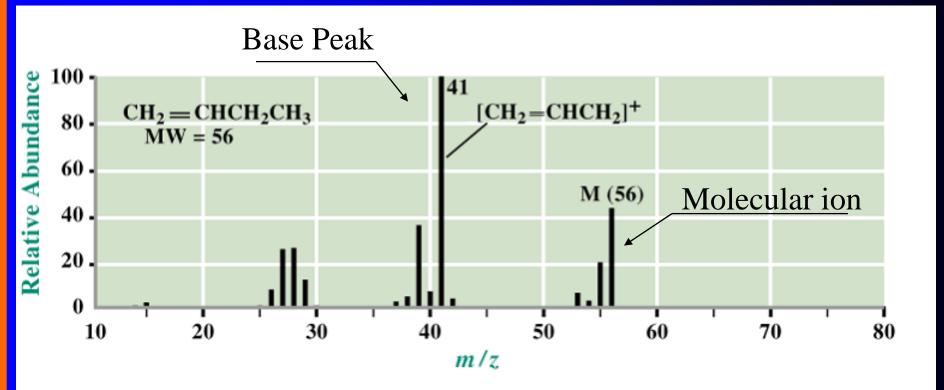
– A dot to show that it has an odd number of electrons

### Molecular Ion

 At times, however, we find it useful to depict the radical cation at a certain position in order to better understand its reactions

 $\begin{bmatrix} CH_{3}CH_{2}OCH(CH_{3})_{2} \end{bmatrix}^{+} \begin{bmatrix} CH_{3}CH_{2}OCH(CH_{3})_{2} \end{bmatrix}^{+}$ 

### Mass Spectrum


 Mass spectrum: a plot of the relative abundance of each ion versus mass-to-charge ratio

Base peak: the most abundant peak; assigned an arbitrary intensity of 100

 The relative abundance of all other ions is reported as a % of abundance of the base peak



#### Mass Spectrum of 1-Butene



### The Nitrogen Rule

• Nitrogen rule: if a compound has

 zero or an even number of nitrogen atoms, its molecular ion will have an *even* m/z value

 an odd number of nitrogen atoms, the molecular ion will have an *odd* m/z value

### **Other MS Techniques**

 What we have described is called electron ionization mass spectrometry (EI MS)

#### • Other techniques include

- Fast atom bombardment (FAB)
- Matrix assisted laser desorption ionization (MALDI)
- Chemical ionization (CI)
- And many others....



### Resolution

• Resolution: a measure of how well a mass spectrometer separates ions of different mass

 Low resolution - capable of distinguishing among ions of different nominal mass, that is ions that differ by at least one or more atomic mass units (Daltons)

 High resolution - capable of distinguishing among ions that differ in mass by as little as 0.0001 mass units

### High Resolution Mass Spectrometer



### Resolution

 - C<sub>3</sub>H<sub>6</sub>O and C<sub>3</sub>H<sub>8</sub>O have nominal masses of 58 and 60 respectively, and can be readily distinguished by low-resolution MS

C<sub>2</sub>H<sub>4</sub>O<sub>2</sub> and C<sub>3</sub>H<sub>8</sub>O both have a nominal mass of 60.
However, we can still distinguish between them by high-resolution MS

| Molecular<br>Formula            | Nominal<br>Mass | Precise<br>Mass |
|---------------------------------|-----------------|-----------------|
| C <sub>3</sub> H <sub>8</sub> O | 60              | 60.05754        |
| $C_2H_4O_2$                     | 60              | 60.02112        |

### **Differences** are due to Isotopes

• In nature Carbon is 98.90% <sup>12</sup>C and 1.10% <sup>13</sup>C. Thus, there are 1.11 atoms of carbon-13 in nature for every 100 atoms of carbon-12...Mass spectroscopists use this measure rather than %!!!!!!

 $\left[\frac{1.10^{13}\text{C}}{98.90^{12}\text{C}}\right] \times 100^{-12}\text{C atoms} = 1.11^{-13}\text{C per }100^{-12}\text{C}$ 

The <u>"relative abundance</u>" of <sup>13</sup>C is defined as 1.11

### Precise masses and natural abundances of isotopes

| Element  | Atomic<br>Weight | Isotope          | Precise Mass<br>(amu) | Relative<br>Abundance |
|----------|------------------|------------------|-----------------------|-----------------------|
| hydrogen | 1.0079           | ΊH               | 1.00783               | 100                   |
|          |                  | <sup>2</sup> H   | 2.01410               | 0.016                 |
| carbon   | 12.011           | <sup>12</sup> C  | 12.0000               | 100                   |
|          |                  | <sup>13</sup> C  | 13.0034               | 1.11                  |
| nitrogen | 14.007           | 14 <sub>N</sub>  | 14.0031               | 100                   |
| U        |                  | <sup>15</sup> N  | 15.0001               | 0.38                  |
| oxygen   | 15.999           | <sup>16</sup> O  | 15.9949               | 100                   |
|          |                  | <sup>17</sup> O  | 16.9991               | 0.04                  |
|          |                  | <sup>18</sup> O  | 17.9992               | 0.20                  |
| sulfur   | 32.066           | <sup>32</sup> S  | 31.9721               | 100                   |
|          |                  | <sup>33</sup> S  | 32.9715               | 0.78                  |
|          |                  | <sup>34</sup> S  | 33.9679               | 4.40                  |
| chlorine | 35.453           | <sup>35</sup> Cl | 34.9689               | 100                   |
|          |                  | <sup>37</sup> Cl | 36.9659               | 32.5                  |
| bromine  | 79.904           | <sup>79</sup> Br | 78.9183               | 100                   |
|          |                  | <sup>81</sup> Br | 80.9163               | 98.0                  |

### **Calculation of Precise Mass**

Use mass of most abundant isotope...why??

C<sub>3</sub>H<sub>8</sub>O and C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>

| С   | 12      | 3 | 36       | 2 | 24       |
|-----|---------|---|----------|---|----------|
| н   | 1.00783 | 8 | 8.06264  | 4 | 4.03132  |
| 0   | 15.9949 | 1 | 15.9949  | 2 | 31.9898  |
| SUM |         |   | 60.05754 |   | 60.02112 |
|     |         |   |          |   |          |

http://www.colby.edu/chemistry/NMR/IsoClus.html